
Execution Cycles

REG
(read)

SW
write

J

MM

- Fetch instruction, update the PC register
Instruction memory (read only)
Get in with an address
The address is stored in the PC register
Get out with the instruction
Pc register is updated [PC + 4]

- Decode
the instruction is parsed into fields (R-format has OPCODE 000000)

Get the source data
Register file (2 read and 1 write port)

* Must understand the implementation of the read and write ports (B 56 on Patterson)

- Execute

ALU: compute logical and arithmetic operations
Output: result of the operation, it can represent target address (lw, sw)

check for zero

- Write back/memory access
Data memory or register file
write-back: R-format
Memory access: Iw and SW

lw
REG

(write)

read

MM

From Patterson:

4

Read
REG#1

Read
REG#2

5

5

+

OP

rs1

Data 2

Read
Data 1

Read

Write
Data

32

32

32 bits

Result

[PC + 4]

REG file

ALU
32

32 bits

Write
REG#

ADDRPC

read
only

V52

rd

ShAmt

FCT

5

Read
Instruction

Instruction MEM

write-Back

Decode

Execute

fetch

rs1 → Read REG #1:
Read the value stored in register rst

rs2 → Read REG #2:

Read the value stored in register v52
rd → Write REG #:

So that the correct Reg #is written to during the Write-Back phase

•

•

•

Data path for R-format

Data path for lw

decode Execute MEM

fetch

write-Back

[PC 4]

32

•
32 bits

4

Read
REG#1

REG#2

Write
REG#

5

ADDRPC

+

OP

rs

Read
Data 2

Read

Read

Write
Data

32

Main Memory

read
data

Write
Data

ADDR
rt

5 32

T.A. 32

16

offset
bytes

32

offset
bytes

Instruction
Read

+

Instruction MEM

REG file

Data 1

offset

32

ALU

SE: Sign Extend

S. E.

Load word)

of
bytes offset

32

T.A. for
Branch

+Sll
2

[PC + 4]

1

1 byte

<

M

Go back
to PC REG

sll: shift logical left

since beg's offset operand is represented

as #of lines (word-aligned memory addressing),

we need to multiply the offset by 4 before

adding it to [PC + 4].

To achieve a times 4 operation, we can left

shift the bits twice.

Data path for BEQ

32

Read
REG#1

Read
REG#2

Write
REG#

5

OP

rs1

Data 2

Read

Read

Write
Data

5

32

Instruction MEM

REG file

Data 1

offset

Number
of lines

V52

32

32

+

check
for zero

[PC + 4]

32 bits

4

ADDRPC

16

Instruction
Read

Number
of lines

ALU

S. E.
SE: sign Extend

First register (read Register 1) : Bits [25-21]
◦ used by all instructions to read the first operand

• Second register (Read Register 2) : Bits [20-16]
◦ Used by:

Register Field in Instructions

- store (sw) to get the value to write memory
- branch (beg)

write Registers

• Load instruction (lw)
◦ Destination Register in bits [20- 16]

- R-format instructions (eg. add, sub)

•

• R-format

◦ Destination Register in bits [15- 11]

Exam 2 Announcement
- Full data path diagram will be provided (from Patterson)
- Be able to draw the data path for any individual instruction
- know what each multiplexer does, inputs/outputs, and control line behavior
- For individual data paths, include only relevant parts, no unnecessary control lines
- Be able to trace PC updates through the nested multiplexers using control line values

Full Data path with control Lines to accomodate different instructions)

PC ADDR

Instruction MEM
[25-21]

5

5

[20-16]

[15-11]

Read
REG#1

REG#2
Read

REG file

Data 2
Read

Read
Data 1

Write
REG#

Write
Data

3232

OP (R, beg)

Base Addr (lw, Sw)
1

32

32

0

1

offset (bytes)

32

offset (bytes)

ALU

Write
Data

read
dataADDR

Memory Unit

S. E.

Memoreg

[15-0]

32

16

l

ALUSRC

RegDst

or result (r-format)
TA (lw, Sw)

Multiplexers used as Control Units

31 26 25 21 20 16 15
"

10 6

ShAmt

5 0

OP RS RT RD FCT

op RS RT
31 26 25 21 20 16 15

offset

R-format:

lw, sw, beg:
Bit ranges indicated

ALUSRC Mux

Controls what the second input of the
ALU will be

R-format:

beg:

Data 2 obtained from
REG #in bits [20-16]

lw:

SW:

32 bits
offset (bytes)

32

/
32

Data 2
(R, beg)

(lw, sw)
offset (bytes)

ALUSRC

I

M
U
✗

- In lw, we write memory
data into a register.

- In R-format, we write
the ALU computation result

into the register.

port of

Reg file

write Data
to

Resut of ALU

(R-format)

from Mem

MemToReg

M
U

✗

Mentoreg Mux

lw: Reg in bits [20-16]

R-format: Reg in bits [15-11]

Dest

Dest

Write
Reg #

M
U
✗

(lw)

[20-16]

[15-11]

(R-format)

RegDst

RegDst Mux

chooses which Register gets written to.
- In R-format, the result is stored into rd

- In lw, we load memory into rt

Jump

offset
in

lines

÷ 28

offset
in bytes

26

offset
in #of
lines

26

[PC + 4]

bytes [31 - 28] from [PC + 4]

32

32 bits

4

ADDRPC

+

read
only

Instruction
Read

Instruction MEM

Control Logic for Updating PC Register

PC
I

0

M
U
✗

Jump

TA Branch

M
Y

TA Jump

1

bytes (offset)
PC

4

lines

[PC + 4]

* check

zfeorro

• R-format, sw, lw:
- Branch = 0

- Jump = 0

- We only update PC to [PC + 4]

• Branch Instruction:
- Branch =
- Jump = 0

- We conditionally

[pct 4] or TA Branch depending on

if check for zero is 0 or 1, respectively

select either
sll
2

• Jump Instruction:
- Branch = 0
- Jump = 1

- we just update PC to TA Jump

* branch

* Branch (is_branch) signal is set to 1 when working
with a branch instruction, otherwise 0

* the check for zero flag is set whenever the ALU is used
for any reason, not just when evaluating a branch,
so we need the AND gate in combination with the branch
signal to together act as the control signal for the Mux.

F r o m P a t t e r s o n A p p e n d i x

Data path Control signals

Control signals by Instruction type

The control signal receives the opcode (bits 31-26 of the instruction) and
sets all relevant control lines to drive the data path to perform the desired

operation. these lines influence components such as multiplexers, the ALU,
and memory units.

Each instruction type (R-format, load, store, branch, jump) triggers specific
settings in the control lines.

R-format Load Store Branch Jump
RegDst

Mentoreg
ALUSRC
Branch

Jump
Regwrite

I

O

O

O

O

O

l

l

O

✗

✗

O

l

✗

✗

✗

O

I

O

O

O

O

Mem write
Mem Read

:0

I

O

:

l

O

l

l

Mux
RegDst
Mem To Reg
ALUSRC
Jump
Branch

Access [Regwrite

Memory [Memwrite
Memread

✗

✗

Note:

- ✗ indicates that the value is irrelevant for that instruction.
- Reg Dst determines the destination register (R-format uses rd, load uses rt)

- Mentoreg selects source for register write (ALU result or memory)

- ALU Sre selects second ALU operand (register read vs. immediate)

Single Cycle Implementation: Performance
Fixed clock cycle (single cycle CPU) is an approach used to evaluate instruction timing

- the entire instruction executes in one clock cycle. → CPI = 1

- clock cycle is determined by the longest instruction path
- once determined, it is fixed for all instructions

Component Delays (Given in picoseconds)

- Memory Unit: 200 ps * the adder for the PC is not considered

- ALU, Adders: 100 ps to take any time

- Register file: 50 ps

R-format

fetch: Read Instruction memory

Decode: Read Reg file (read 2 source reg in parallel) ⇒

Compute: Access ALU

Write Back: Write into the Reg file

⇒ 200 ps

Decode: Read Reg file (read 2 source reg in parallel) ⇒ 50 Ps

Compute: Access ALU (compute target Address) 100 ps

Memory Access (write data to memory) 200 ps

fetch: Read Instruction memory

200 ps

50 ps

100 ps

50 ps

⇒

⇒

⇒
⇒

550 ps

400 ps

Store

Beg

fetch: Read Instruction memory

Decode: Read Reg file (read 2 source reg in parallel) ⇒ 50

Compute: Access ALU (check for zero)
Done in Parallel 100

Compute: Target Address (use an Adder) 350
L

Ps

Ps

ps

⇒ 200

⇒

ps

), then that* Since the longest instruction is that of hw (600 ps
means that a program of 50 instructions, regardless of type, would

take 50 ✗ 600ps to complete

Inefficiencies and the motivation for Pipelining

Using a fixed-length clock cycle based on the slowest instruction introduces
inefficiencies. Instructions that require less time (like R-format or Branch)

are forced to wait for the full cycle length of the longest instruction (eg. load).

This means a lot of clock time is wasted on idle components during the

execution of faster components.

Pipelining addresses by overlapping instruction stages. Instead of executing
one instruction at a time from start to finisha, pipelining divides execution

into stages (eg. fetch, decode, execute, memory, write-back), allowing

multiple instructions to be in different stages simultaneously. this boosts

throughput and better utilizes hardware resources.

Load

fetch: Read Instruction memory

Decode: Read Reg file (reads only 1 source Address)

Compute: Access ALU (compute target Address)

Memory Access (read data from memory)

write Back (write to Reg file)

200 Ps

50 Ps

100 Ps

200 ps

50 ps

⇒
⇒

⇒
⇒
⇒

600 ps

	Execution Cycles
	Datapath for R-format
	Datapath for lw
	Datapath for beq
	Full Datapath with Control Lines
	Multiplexers Used as Control Units
	Datapath for Jump
	Control Logic for Updating PC Register
	Datapath Control Signals
	Single Cycle Implementation: Performance

