
1 cell = 1 bit
8 cells = 8 bits = 1 byte
4 bytes = 1 word (in MIPS)

Addressing * MIPS uses byte Addressing

To represent the number of addressable units in a system:

2" x m where k is the Address size, m = word size

2" distinct addresses → 2" distinct words

Read: uses MUX
Write: In order to get to a specific location: uses decoders
Memory is built from small components to bigger components

To access a specific memory location: we access the bigger structures first (big → small access strategy)

Memory

Array of RAM chips

We can increase memory chips or increase the size of a word

If we have the RAM config 1K × 8 = 2" x 8 (1k = 210 = 1024 → has 1024 words, each
word being 8 bits)

want to have 10240 wordsSay we want to increase our memory capacity by 10 → we

We'll put 10 chips together → Co to Ca

- Say we then want to access word 3079, then we need to have a method

for how we can access the correct memory location.

- since we have 1024-word chips, then we consider that if we want to

find word 1023, it will be on the first chip, Co, and word 1024 on C,

(3079 = 1024×3 + 7 ⇒ our target word is on chip 3 with a

word offset of 7

3079 = 3 × 1024 + 7 = 2×1024 + 1024 + 7

J

+ 210 + 72"

I / 0000000111
2 1 09 8 7 6 5 4 311 10

Absolute Address:

If we have 32-bit Addresses, then we'll have to pad the absolute address with a bunch of
zeros

the absolute Address is partitioned (from right to left) into fields

the chip # offset inside the chip

The size of the offset = size of the chip's address
↳ in our case, the originally stated memory config was 1K ✗ 8 → the address is 10 bits (210

32 bit Address: We'll implement a decoder to act as our

chip selector. since we have 10 chips, we

need to implement a decoder that accepts

a 4- bit input to accommodate all possible

chip selections 0-9

000... 0011 0000000111
chip # offset (10 bits)

* Cs = Chip select

0011
Decoder

4×24 :'

9
:

15

chip #

4 bits

Co

Efft output

CS

C,
CS

Addr

C2
CS

Addr

Cq
CS

Addr

O

l

2

••

••

••

11°

10

10

1
1°

